On the Grayson-Stuhler Filtration of Euclidean Lattices

Renaud Coulangeon, Université de Bordeaux

In this instructional talk I will introduce the notion of semistability for Euclidean lattices, and define the canonical filtration of a Euclidean lattice by semi stable ones. This filtration has many remarkable properties, and has probably not received all the attention it deserves. This theory dates back to Stuhler ([Stu76]) and Grayson ([Gra84]), who used it to build an alternative to Borel Serre’s compactification of locally symmetric spaces.

In short, given a Euclidean lattice \(L \), one can plot in the plane the points \((\dim M, \log \det M)\) as \(M \) varies among all sublattices of \(L \). Their convex hull is bounded below by a certain convex polygon which has two important properties:

- each of its vertices corresponds to a unique sublattice \(M \) of \(L \).
- these sublattices form a chain, which we call the Grayson-Stuhler filtration of \(L \).

Among other noteworthy properties, this filtration is invariant under automorphisms and scalar extension. As time allows, I will also speak about a conjecture regarding the behaviour of this filtration with respect to tensor product.

References

